Corrigendum: Critical exponents and scaling invariance in the absence of a critical point
نویسندگان
چکیده
invariance in the absence of a critical point N. Saratz, D.A. Zanin, U. Ramsperger, S.A. Cannas, D. Pescia & A. Vindigni Nature Communications 7:13611 doi: 10.1038/ncomms13611 (2016); Published 5 Dec 2016; Updated 17 Jan 2017 The original version of this Article contained a typographical error in the spelling of the author S.A. Cannas, which was incorrectly given as S. Cannas. This has now been corrected in both the PDF and HTML versions of the Article. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/
منابع مشابه
THE SCALING LAW FOR THE DISCRETE KINETIC GROWTH PERCOLATION MODEL
The Scaling Law for the Discrete Kinetic Growth Percolation Model The critical exponent of the total number of finite clusters α is calculated directly without using scaling hypothesis both below and above the percolation threshold pc based on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can calculate other critical exponents β and γ, and show that the scal...
متن کاملCorner Exponents in the Two-Dimensional Potts Model
The critical behavior at a corner in two-dimensional Ising and three-state Potts models is studied numerically on the square lattice using transfer operator techniques. The local critical exponents for the magnetization and the energy density for various opening angles are deduced from finite-size scaling results at the critical point for isotropic or anisotropic couplings. The scaling dimensio...
متن کاملON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS
In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variatio...
متن کاملConformal invariance and universal critical exponents in the two-dimensional percolation model
For most two-dimensional critical percolation models, we show the existence of a scaling limit for the crossing probabilities in an isosceles right triangle. Furthermore, by justifying the lattice, the scaling limit is a conformal invariance satisfying Cardy’s formula in Carleson’s form. Together with the standard results of the SLE6 process, we show that most critical exponents exist in the se...
متن کاملQuasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$
We study the existence of soliton solutions for a class of quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth. This model has been proposed in the self-channeling of a high-power ultra short laser in matter.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017